Search

3,346 results found for openai (1916ms)

Code
3,251

Note: When changing a SQLite table's schema, change the table's name (e.g., add _2 or _3) to cre
### OpenAI
```ts
import { OpenAI } from "https://esm.town/v/std/openai";
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
messages: [
{ role: "user", content: "Say hello in a creative way" },
export const COMPETITORS = [
{
name: "OpenAI",
url: "https://openai.com",
description: "OpenAI homepage"
},
{
- [ ] Get OpenTownie or Gemini or Claude or OpenAI to synthesize the core of these patterns into
- [ ] Convert this or into the basic react router guest book (and preserve this forum app in ano
- [ ] To what extent can these patterns be packaged up into a Val Town Router project? Would be
_2 or_3) to create a fresh table.
### OpenAI
```ts
import { OpenAI } from "https://esm.town/v/std/openai";
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
messages: [
{ role: "user", content: "Say hello in a creative way" },
import { email } from "https://esm.town/v/std/email";
import { OpenAI } from "https://esm.town/v/std/openai";
export default async function (incomingEmail: Email) {
try {
const openai = new OpenAI();
const emailContent = incomingEmail.text || incomingEmail.html ||
"No content available";
const completion = await openai.chat.completions.create({
messages: [
{
// @ts-ignore
import { OpenAI } from "https://esm.town/v/std/openai?v=4";
// --- AI BEHAVIORAL GUIDELINES ---
<footer class="text-center mt-6 text-gray-500 text-sm">
-blue-400 hover:underline" target="_blank">Val Town</a> & OpenAI.</p>
</footer>
if (req.method === "POST" && action === "enhanceNotes") {
try {
const openai = new OpenAI();
const body = await req.json();
}
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [
2. **Environment Variables** (left sidebar)
```bash
OPENAI_API_KEY=your_openai_api_key_here
```
## Customization
Edit the system prompt in `openai.ts` to change how issues are categorized.
## Output
}))
const { categorizeIssues: categorizeWithAI } = await import('./openai.ts')
return categorizeWithAI(processedIssues)
}
import OpenAI from 'npm:openai'
const openai = new OpenAI({
apiKey: Deno.env.get('OPENAI_API_KEY')
})
export async function categorizeIssues(issues: any[]) {
const completion = await openai.chat.completions.create({
model: "gpt-4o-mini",
messages: [{ role: "user", content: `Analyze these GitHub issues and categorize them into a
const aiResponse = completion.choices[0].message.content
if (!aiResponse) throw new Error('OpenAI returned empty response')
try {
return JSON.parse(aiResponse)
} catch (error) {
console.error('Failed to parse OpenAI response:', aiResponse.substring(0, 1000) + '...')
// Try to repair truncated JSON by finding the last complete array
return JSON.parse(repairedResponse)
} catch (repairError) {
throw new Error(`Invalid JSON response from OpenAI: ${error.message}`)
}
}
import { OpenAI } from "npm:openai";
import type {
AppMentionEvent,
import { slack } from "./slack.ts";
import { readFile } from "https://esm.town/v/std/utils/index.ts";
import { zodTextFormat } from "npm:openai/helpers/zod";
import { z } from "npm:zod@3.23.8";
];
const openai = new OpenAI({ apiKey: Deno.env.get("OPENAI_API_KEY") });
async function getHistory(
event: AppMentionEvent | GenericMessageEvent,
): Promise<OpenAI.Responses.ResponseInput> {
const { messages } = await slack.conversations.replies({
channel: event.channel,
async function shouldReply(
threadHistory: OpenAI.Responses.ResponseInput,
): Promise<boolean> {
const ShouldReplyOjbect = z.object({
});
const response = await openai.responses.parse({
model: "gpt-4o-2024-08-06",
input: [
export async function reply(
event: AppMentionEvent | GenericMessageEvent,
messages: OpenAI.Responses.ResponseInput,
) {
// reply in thread or start one
});
const input: OpenAI.Responses.ResponseInput = [
{ role: "developer", content: SYSTEM_PROMPT },
...messages,
for (let step = 0; step < MAX_STEPS; step++) {
const response = await openai.responses.create({
model: "gpt-4.1",
input,