Search

178 results found for embeddings (6331ms)

Code
168

"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
* Initialize the embedding model
*/
async function initEmbeddings(modelId = EMBEDDING_MODELS.fast) {
if (embedder && embedder.model?.config?.name_or_path === modelId) {
return embedder;
async function processAllFeeds() {
await initDatabase();
await initEmbeddings();
let totalProcessed = 0;
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
"link": "/blog/val-vibes",
"description":
"How to build semantic search with embeddings for Val Town within Val Town itself",
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
rups/ai/README.md
2 matches
```
async function calculateEmbeddings(text) {
const url = `https://yawnxyz-ai.web.val.run/generate?embed=true&value=${encodeURIComponent(t
return data;
} catch (error) {
console.error('Error calculating embeddings:', error);
return null;
}
// Embedding endpoints
async generateEmbedding(request: EmbeddingRequest): Promise<ApiResponse<EmbeddingResponse>> {
return this.request<EmbeddingResponse>('/embeddings/generate', {
method: 'POST',
body: JSON.stringify(request),
threshold?: number;
}): Promise<ApiResponse<any>> {
return this.request('/embeddings/search', {
method: 'POST',
body: JSON.stringify(query),
}
async embeddingsHealthCheck(): Promise<ApiResponse<any>> {
return this.request('/embeddings/health');
}
const API_CACHE_PATTERNS = [
/\/api\/health/,
/\/api\/embeddings\/health/,
/\/api\/chat\/health/
];
peterqliu
PineconeIndex
Vector db's on Pinecone, with OpenAI embeddings
Public
tmcw
surprisingEmbeddings
Visualizing embedding distances
Public
maxm
emojiVectorEmbeddings
 
Public
janpaul123
blogPostEmbeddingsDimensionalityReduction
 
Public
janpaul123
compareEmbeddings
 
Public

Users

No users found
No docs found