Search

178 results found for embeddings (5473ms)

Code
168

"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
- `imageRecognition.labels`: Visual elements detected (people, objects, logos,
etc.)
- `vectors`: Text embeddings for semantic similarity (using Basilica method)
- **Content metadata fields** (may not yet be generally populated):
- `description`: Manual content descriptions
- `imageRecognition.labels`: Visual elements detected (people, objects, logos,
etc.)
- `vectors`: Text embeddings for semantic similarity (using Basilica method)
- **Content metadata fields** (may not yet be generally populated):
- `description`: Manual content descriptions
- `imageRecognition.labels`: Visual elements detected (people, objects, logos,
etc.)
- `vectors`: Text embeddings for semantic similarity (using Basilica method)
- **Content metadata fields** (may not yet be generally populated):
- `description`: Manual content descriptions
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
contents: [query],
});
const values = result.embeddings[0].values;
const queryResult = (await qdrant.search("wdl", {
vector: values,
return handleCompletions(await request.json(), apiKey)
.catch(errHandler);
case pathname.endsWith("/embeddings"):
assert(request.method === "POST");
return handleEmbeddings(await request.json(), apiKey)
.catch(errHandler);
case pathname.endsWith("/models"):
}
const DEFAULT_EMBEDDINGS_MODEL = "gemini-embedding-001";
async function handleEmbeddings (req, apiKey) {
let modelFull, model;
switch (true) {
break;
default:
model = DEFAULT_EMBEDDINGS_MODEL;
}
modelFull = modelFull ?? "models/" + model;
let { body } = response;
if (response.ok) {
const { embeddings } = JSON.parse(await response.text());
body = JSON.stringify({
object: "list",
data: embeddings.map(({ values }, index) => ({
object: "embedding",
index,
transactions Shows transaction usage: starting, performing operations, and committing/rolling ba
memory Uses an in-memory SQLite database for temporary storage or fast access.
vector Works with vector embeddings, storing and querying for similarity search.
encryption Creates and uses an encrypted SQLite database, demonstrating setup and data operation
ollama Similarity search with Ollama and Mistral.
transactions Shows transaction usage: starting, performing operations, and committing/rolling ba
memory Uses an in-memory SQLite database for temporary storage or fast access.
vector Works with vector embeddings, storing and querying for similarity search.
encryption Creates and uses an encrypted SQLite database, demonstrating setup and data operation
ollama Similarity search with Ollama and Mistral.
"Connectors stream data from IoT/APIs/DBs into JetStream.",
"Persist to Streams + mirror across regions for locality.",
"Use KV/Object Store for embeddings & RAG artifacts.",
],
},
peterqliu
PineconeIndex
Vector db's on Pinecone, with OpenAI embeddings
Public
tmcw
surprisingEmbeddings
Visualizing embedding distances
Public
maxm
emojiVectorEmbeddings
 
Public
janpaul123
blogPostEmbeddingsDimensionalityReduction
 
Public
janpaul123
compareEmbeddings
 
Public

Users

No users found
No docs found