Search

3,380 results found for openai (7579ms)

Code
3,285

join/legl/main.tsx
12 matches
* Legal AI Document Analysis (Single Val Version with PDF Upload & Dashboard Style)
* Ingests documents (URL, Text, PDF Upload), takes a user-defined legal task query,
* and uses a Legal AI Agent (via OpenAI) to analyze the content.
* The Legal AI Agent outputs a standardized JSON structure.
* Uses 'npm:pdf.js-extract' for direct PDF text extraction within the Val.
export default async function(req: Request) {
// --- Dynamic Imports (Inside Handler) ---
const { OpenAI } = await import("https://esm.town/v/std/openai");
const { z } = await import("npm:zod"); // For potential future robust input validation on serv
const { fetch } = await import("https://esm.town/v/std/fetch");
}
// --- Helper Function: Call OpenAI API ---
async function callOpenAI(
openai: OpenAI,
systemPrompt: string,
userMessage: string, // This will be the document text
): Promise<object | string> { // Return type can be object if JSON, or string if error
try {
const response = await openai.chat.completions.create({
model: model,
messages: [{ role: "system", content: systemPrompt }, { role: "user", content: userMessa
return JSON.parse(content);
} catch (parseError) {
console.error("OpenAI JSON Parse Error:", parseError, "Raw Content:", content);
// Return the raw content if parsing fails, for debugging, wrapped as an error object
return {
}
} catch (error) {
console.error(`OpenAI API call failed. Error:`, error);
let errorMessage = "Error communicating with AI model.";
if (error.message) { errorMessage += ` Details: ${error.message}`; }
log: LogEntry[],
): Promise<{ finalResult?: LegalAIResponse | object; log: LogEntry[] }> {
const openai = new OpenAI(); // Assumes OPENAI_API_KEY is in environment
log.push({ agent: "System", type: "step", message: "Starting Legal AI analysis workflow." })
finalSystemPrompt = finalSystemPrompt.replace("%%INPUT_SOURCE_DESCRIPTION%%", input.inputSou
const aiResponse = await callOpenAI(openai, finalSystemPrompt, truncatedText, "gpt-4o", true
if (typeof aiResponse === "object" && (aiResponse as any).error) {
// Error from callOpenAI helper (API or parsing)
log.push({
agent: "Legal AI Agent",
log.push({ agent: "System", type: "final", message: "Workflow finished successfully." });
return { finalResult: aiResponse as LegalAIResponse, log };
} else { // Should not happen if expectJson is true and no error object from callOpenAI
log.push({
agent: "Legal AI Agent",
Note: When changing a SQLite table's schema, change the table's name (e.g., add _2 or _3) to cre
### OpenAI
```ts
import { OpenAI } from "https://esm.town/v/std/openai";
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
messages: [
{ role: "user", content: "Say hello in a creative way" },
Note: When changing a SQLite table's schema, change the table's name (e.g., add _2 or _3) to cre
### OpenAI
```ts
import { OpenAI } from "https://esm.town/v/std/openai";
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
messages: [
{ role: "user", content: "Say hello in a creative way" },
Get/Lawyers/main.tsx
12 matches
* Legal AI Document Analysis (Single Val Version with PDF Upload & Dashboard Style)
* Ingests documents (URL, Text, PDF Upload), takes a user-defined legal task query,
* and uses a Legal AI Agent (via OpenAI) to analyze the content.
* The Legal AI Agent outputs a standardized JSON structure.
* Uses 'npm:pdf.js-extract' for direct PDF text extraction within the Val.
export default async function(req: Request) {
// --- Dynamic Imports (Inside Handler) ---
const { OpenAI } = await import("https://esm.town/v/std/openai");
const { z } = await import("npm:zod"); // For potential future robust input validation on serv
const { fetch } = await import("https://esm.town/v/std/fetch");
}
// --- Helper Function: Call OpenAI API ---
async function callOpenAI(
openai: OpenAI,
systemPrompt: string,
userMessage: string, // This will be the document text
): Promise<object | string> { // Return type can be object if JSON, or string if error
try {
const response = await openai.chat.completions.create({
model: model,
messages: [{ role: "system", content: systemPrompt }, { role: "user", content: userMessa
return JSON.parse(content);
} catch (parseError) {
console.error("OpenAI JSON Parse Error:", parseError, "Raw Content:", content);
// Return the raw content if parsing fails, for debugging, wrapped as an error object
return {
}
} catch (error) {
console.error(`OpenAI API call failed. Error:`, error);
let errorMessage = "Error communicating with AI model.";
if (error.message) { errorMessage += ` Details: ${error.message}`; }
log: LogEntry[],
): Promise<{ finalResult?: LegalAIResponse | object; log: LogEntry[] }> {
const openai = new OpenAI(); // Assumes OPENAI_API_KEY is in environment
log.push({ agent: "System", type: "step", message: "Starting Legal AI analysis workflow." })
finalSystemPrompt = finalSystemPrompt.replace("%%INPUT_SOURCE_DESCRIPTION%%", input.inputSou
const aiResponse = await callOpenAI(openai, finalSystemPrompt, truncatedText, "gpt-4o", true
if (typeof aiResponse === "object" && (aiResponse as any).error) {
// Error from callOpenAI helper (API or parsing)
log.push({
agent: "Legal AI Agent",
log.push({ agent: "System", type: "final", message: "Workflow finished successfully." });
return { finalResult: aiResponse as LegalAIResponse, log };
} else { // Should not happen if expectJson is true and no error object from callOpenAI
log.push({
agent: "Legal AI Agent",
Get/legl/main.tsx
12 matches
* Legal AI Document Analysis (Single Val Version with PDF Upload & Dashboard Style)
* Ingests documents (URL, Text, PDF Upload), takes a user-defined legal task query,
* and uses a Legal AI Agent (via OpenAI) to analyze the content.
* The Legal AI Agent outputs a standardized JSON structure.
* Uses 'npm:pdf.js-extract' for direct PDF text extraction within the Val.
export default async function(req: Request) {
// --- Dynamic Imports (Inside Handler) ---
const { OpenAI } = await import("https://esm.town/v/std/openai");
const { z } = await import("npm:zod"); // For potential future robust input validation on serv
const { fetch } = await import("https://esm.town/v/std/fetch");
}
// --- Helper Function: Call OpenAI API ---
async function callOpenAI(
openai: OpenAI,
systemPrompt: string,
userMessage: string, // This will be the document text
): Promise<object | string> { // Return type can be object if JSON, or string if error
try {
const response = await openai.chat.completions.create({
model: model,
messages: [{ role: "system", content: systemPrompt }, { role: "user", content: userMessa
return JSON.parse(content);
} catch (parseError) {
console.error("OpenAI JSON Parse Error:", parseError, "Raw Content:", content);
// Return the raw content if parsing fails, for debugging, wrapped as an error object
return {
}
} catch (error) {
console.error(`OpenAI API call failed. Error:`, error);
let errorMessage = "Error communicating with AI model.";
if (error.message) { errorMessage += ` Details: ${error.message}`; }
log: LogEntry[],
): Promise<{ finalResult?: LegalAIResponse | object; log: LogEntry[] }> {
const openai = new OpenAI(); // Assumes OPENAI_API_KEY is in environment
log.push({ agent: "System", type: "step", message: "Starting Legal AI analysis workflow." })
finalSystemPrompt = finalSystemPrompt.replace("%%INPUT_SOURCE_DESCRIPTION%%", input.inputSou
const aiResponse = await callOpenAI(openai, finalSystemPrompt, truncatedText, "gpt-4o", true
if (typeof aiResponse === "object" && (aiResponse as any).error) {
// Error from callOpenAI helper (API or parsing)
log.push({
agent: "Legal AI Agent",
log.push({ agent: "System", type: "final", message: "Workflow finished successfully." });
return { finalResult: aiResponse as LegalAIResponse, log };
} else { // Should not happen if expectJson is true and no error object from callOpenAI
log.push({
agent: "Legal AI Agent",
- [**We at Val Town**](https://www.val.town/u/valdottown) made [door](https://www.val.town/x/val
- [**Joey Hiller**](https://www.val.town/u/jhiller) made [ValTown-Package-Tracker](https://www.v
//www.val.town/x/dinavinter/slack), a Slack bot that uses OpenAI to generate responses.
- [**prashamtrivedi**](https://www.val.town/u/prashamtrivedi) made [hn-remote-ts-genai-jobs](htt
- [**dcm31**](https://www.val.town/u/dcm31) made [rotrank](https://www.val.town/x/dcm31/rotrank)
* Legal AI Document Analysis (Single Val Version with PDF Upload & Dashboard Style)
* Ingests documents (URL, Text, PDF Upload), takes a user-defined legal task query,
* and uses a Legal AI Agent (via OpenAI) to analyze the content.
* The Legal AI Agent outputs a standardized JSON structure.
* Uses 'npm:pdf.js-extract' for direct PDF text extraction within the Val.
// --- Main Request Handler (Server Code) ---
export default async function(req: Request) {
const { OpenAI } = await import("https://esm.town/v/std/openai");
// Zod is imported globally via import statement at the top of the script
const { fetch } = await import("https://esm.town/v/std/fetch"); // Using std/fetch
}
// --- Helper Function: Call OpenAI API ---
async function callOpenAI(
openai: OpenAI,
systemPrompt: string,
userMessage: string,
log.push({ agent, type: "step", message: CONFIG.statusMessages.aiAnalysisInProgress(model) }
try {
const response = await openai.chat.completions.create({
messages: [{ role: "system", content: systemPrompt }, { role: "user", content: userMessa
temperature: 0.2, // REFACTOR: Slightly lower for more precision
message: `AI response was not valid JSON. Raw: ${content.substring(0, 250)}...`,
});
console.error("OpenAI JSON Parse Error:", parseError, "Raw Content:", content);
return {
error: "AI_JSON_PARSE_ERROR",
}
} catch (error) {
console.error(`OpenAI API call failed for model ${model}. Error:`, error);
let errorMessage = `Error communicating with AI model (${model}).`;
if (error.message) { errorMessage += ` Details: ${error.message}`; }
},
): Promise<{ finalResult?: LegalAIResponse | object; log: LogEntry[] }> {
const openai = new OpenAI();
log.push({ agent: "System", type: "step", message: "Legal AI analysis workflow initiated." }
.replace("%%AI_MODEL_USED%%", input.aiModel);
const aiResponseOrError = await callOpenAI(openai, finalSystemPrompt, truncatedText, input.a
if (typeof aiResponseOrError === "object" && (aiResponseOrError as any).error) {
// Error already logged by callOpenAI
log.push({ agent: "System", type: "final", message: "Workflow finished with AI processing
return { finalResult: aiResponseOrError, log };
}
// At this point, Zod validation passed in callOpenAI, so it's LegalAIResponse
const aiResponse = aiResponseOrError as LegalAIResponse;
rups/ai/main.tsx
17 matches
import { Hono } from "npm:hono@3";
import { cors } from "npm:hono/cors";
import { createOpenAI } from "npm:@ai-sdk/openai";
import { createAnthropic } from "npm:@ai-sdk/anthropic@0.0.48";
import { google, createGoogleGenerativeAI } from 'npm:@ai-sdk/google';
});
const openai = createOpenAI({
// apiKey = Deno.env.get("OPENAI_API_KEY");
apiKey: Deno.env.get("OPENAI_API_KEY_COVERSHEET")
});
const groq = createOpenAI({
baseURL: 'https://api.groq.com/openai/v1',
apiKey: Deno.env.get("GROQ_API_KEY"),
});
const perplexity = createOpenAI({
apiKey: Deno.env.get("PERPLEXITY_API_KEY") ?? '',
baseURL: 'https://api.perplexity.ai/',
this.memories = options.memories || [];
this.messages = options.messages || [];
this.defaultProvider = options.provider || 'openai';
this.defaultModel = options.model;
this.defaultMaxTokens = options.maxTokens;
let result;
switch (provider) {
case 'openai':
result = await this.generateOpenAIResponse({ model, prompt, maxTokens, temperature, stre
break;
case 'anthropic':
}
async generateOpenAIResponse({ model, prompt, maxTokens, temperature, streaming, schema, syste
const modelId = model || 'gpt-3.5-turbo';
if (embed) {
let result = await this.generateOpenAIEmbedding({ model, value, dimensions, user });
// console.log('embed!', result)
return result
const options = {
model: openai(modelId),
system,
temperature,
}
async generateOpenAIEmbedding({ model, value, dimensions, user }) {
const modelId = model || 'text-embedding-3-large';
const options = {
model: openai.embedding(modelId, {
dimensions,
user,
app.get('/generate', async (c) => {
const provider = c.req.query('provider') || 'openai';
const model = c.req.query('model');
const prompt = c.req.query('prompt');
console.log("post/generate", { mode: 'post/generate', prompt, provider, model });
const response = await modelProvider.gen({
provider: provider || 'openai',
model,
prompt,
import { type Context, Hono } from "https://esm.sh/hono@3.11.7";
import { blob } from "https://esm.town/v/std/blob";
import { OpenAI } from "https://esm.town/v/std/openai";
import { sqlite } from "https://esm.town/v/stevekrouse/sqlite";
import Groq from "npm:groq-sdk";
const app = new Hono();
const openai = new OpenAI();
// Get all voice notes (for admin/dashboard)
async function transcribeAudio(voiceNoteId: string, audioBuffer: ArrayBuffer) {
try {
// Convert ArrayBuffer to File for OpenAI
const audioFile = new File([audioBuffer], "audio.webm", { type: "audio/webm" });
Note: When changing a SQLite table's schema, change the table's name (e.g., add _2 or _3) to cre
### OpenAI
```ts
import { OpenAI } from "https://esm.town/v/std/openai";
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
messages: [
{ role: "user", content: "Say hello in a creative way" },