Search

178 results found for embeddings (3506ms)

Code
168

const input = v.parse(inputSchema, ["dogs", "cats", "felines", "canines"])
const embeddings = await client.embed({
input,
model: "voyage-3-lite",
return {
word,
embedding: embeddings.data?.at(i)?.embedding,
}
})
matches({ type: "embedding", provider: "openai" }),
async () => {
const { OpenAIEmbeddings } = await import("https://esm.sh/langchain/embeddings/openai");
return new OpenAIEmbeddings(args);
},
],
async () => {
await import("https://esm.sh/@huggingface/inference");
const { HuggingFaceInferenceEmbeddings } = await import("https://esm.sh/langchain/embedd
return new HuggingFaceInferenceEmbeddings(args);
},
],
matches({ type: "embedding", provider: "openai" }),
async () => {
const { OpenAIEmbeddings } = await import(
"npm:langchain/embeddings/openai"
);
return new OpenAIEmbeddings(args);
},
],
async () => {
await import("npm:@huggingface/inference");
const { HuggingFaceInferenceEmbeddings } = await import(
"npm:langchain/embeddings/hf"
);
return new HuggingFaceInferenceEmbeddings(args);
},
],
// Get embedding for a single emoji
async function getEmbedding(emoji: string): Promise<number[]> {
const result = await openai.embeddings.create({
input: emoji,
model: "text-embedding-3-small",
// // Get embedding for a single emoji
// async function getEmbedding(emoji: string): Promise<number[]> {
// const result = await openai.embeddings.create({
// input: emoji,
// model: "text-embedding-3-small",
// }
// // Get embeddings for all emojis
// async function getAllEmbeddings(): Promise<EmojiEmbedding[]> {
// const emojis = getAllEmojis();
// const embeddings: EmojiEmbedding[] = [];
// // Process emojis in batches to avoid rate limits
// const batchResults = await Promise.all(batchPromises);
// embeddings.push(...batchResults);
// // Add a small delay between batches
// }
// return embeddings;
// }
// function findNearestNeighbors(
// targetEmbedding: number[],
// allEmbeddings: EmojiEmbedding[],
// k: number = 5,
// ): { emoji: string; similarity: number }[] {
// return allEmbeddings
// .map(entry => ({
// emoji: entry.emoji,
// async function main() {
// try {
// console.log("Getting embeddings for all emojis...");
// const allEmbeddings = await getAllEmbeddings();
// // Example: Find nearest neighbors for 😆
// console.log(`Finding nearest neighbors for ${targetEmoji}...`);
// const neighbors = findNearestNeighbors(targetEmbedding, allEmbeddings);
// console.log("\nNearest neighbors:");
# Emoji Instant Search
Uses vector embeddings to get "vibes" search on emojis
// Generate embedding for a given text
async function generateEmbedding(text: string): Promise<number[]> {
const response = await openai.embeddings.create({
model: "text-embedding-ada-002",
input: text,
matches({ type: "embedding", provider: "openai" }),
async () => {
const { OpenAIEmbeddings } = await import(
"npm:langchain/embeddings/openai"
);
return new OpenAIEmbeddings(args);
},
],
async () => {
await import("npm:@huggingface/inference");
const { HuggingFaceInferenceEmbeddings } = await import(
"npm:langchain/embeddings/hf"
);
return new HuggingFaceInferenceEmbeddings(args);
},
],
matches({ type: "embedding", provider: "openai" }),
async () => {
const { OpenAIEmbeddings } = await import(
"npm:langchain/embeddings/openai"
);
return new OpenAIEmbeddings(args);
},
],
async () => {
await import("npm:@huggingface/inference");
const { HuggingFaceInferenceEmbeddings } = await import(
"npm:langchain/embeddings/hf"
);
return new HuggingFaceInferenceEmbeddings(args);
},
],
app.post("/", async (c) => {
const body = await c.req.json();
tTags, getTagsPrompt, getSummary, getSummaryPrompt, getEmbeddings } = body;
try {
}
const [summary, tags, embeddings] = await Promise.all([
getSummary ? getSummaryFn(getSummaryPrompt, content) : null,
getTags ? getTagsFn(getTagsPrompt, content) : null,
getEmbeddings ? getEmbeddingsFn(content) : null
]);
return c.json({ summary: summary?.text, tags: tags?.text, content, embeddings });
} catch (error) {
return c.json({ error: error.message || error || "Unknown error."})
export const getBlurbFromUrl = async (url: string, { content,
getSummary = true, getSummaryPrompt, getTags = true, getTagsPrompt, getEmbeddings,
model, provider
} = {}) => {
}
let summary, tags, embeddings
if (getSummary) {
summary = await getSummaryFn(getSummaryPrompt, content, { model, provider });
tags = await getTagsFn(getTagsPrompt, content, { model, provider });
}
if (getEmbeddings) {
embeddings = await getEmbeddingsFn(content + " " + summary + " " + tags);
}
summary: summary.text,
tags: tags.text,
embeddings
}
};
}
export const getEmbeddingsFn = async (content) => {
let result = await ai({
provider: "openai",
ejfox/umap/main.tsx
24 matches
* This microservice implements a high-performance dimensionality reduction API using UMAP.
* It uses the umap-js library for efficient UMAP computation and implements caching for improve
equests with JSON payloads containing high-dimensional embeddings and configuration parameters.
* It returns 2D coordinates as the result of dimensionality reduction.
*
*
* Common use cases include:
* - Visualizing word embeddings or document vectors in NLP tasks
* - Analyzing gene expression data in bioinformatics
* - Exploring customer segmentation in marketing analytics
* - Visualizing image embeddings in computer vision tasks
*/
try {
const { embeddings, config } = await request.json();
// Input validation
if (!Array.isArray(embeddings) || embeddings.length === 0) {
return new Response("Invalid input: embeddings must be a non-empty array", { status: 400 }
}
if (embeddings.length > MAX_POINTS) {
return new Response(`Input too large: maximum ${MAX_POINTS} points allowed`, { status: 413
}
if (embeddings[0].length > MAX_DIMENSIONS) {
return new Response(`Input too high-dimensional: maximum ${MAX_DIMENSIONS} dimensions allo
}
// Generate cache key
const encoder = new TextEncoder();
const data = encoder.encode(JSON.stringify({ embeddings, config }));
const hashBuffer = await crypto.subtle.digest("MD5", data);
const hashArray = Array.from(new Uint8Array(hashBuffer));
// Perform UMAP with timeout
const result = await Promise.race([
umap.fit(embeddings),
new Promise((_, reject) => setTimeout(() => reject(new Error("Computation timed out")), TI
]);
<h2>Common Use Cases</h2>
<ul>
<li>Visualizing word embeddings or document vectors in NLP tasks</li>
<li>Analyzing gene expression data in bioinformatics</li>
<li>Exploring customer segmentation in marketing analytics</li>
<li>Visualizing image embeddings in computer vision tasks</li>
</ul>
<h2>How to Use</h2>
to use the API. The request should include an array of embeddings and optional configuration par
<div class="example">
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
embeddings: [[1,2,3], [4,5,6], [7,8,9]],
config: { nNeighbors: 15, minDist: 0.1, spread: 1.0 }
})
<h3>Curl Example:</h3>
<pre>
curl -X POST -H "Content-Type: application/json" -d '{"embeddings": [[1,2,3], [4,5,6], [7,8,9]],
</pre>
</div>
<div class="example">
<h3>Example with OpenAI Embeddings:</h3>
<p>This example shows how to use the UMAP service with OpenAI embeddings:</p>
<pre>
// First, generate embeddings using OpenAI API
import { OpenAI } from "https://esm.town/v/std/openai";
const openai = new OpenAI();
async function getEmbeddings(texts) {
const response = await openai.embeddings.create({
model: "text-embedding-ada-002",
input: texts,
}
// Then, use these embeddings with the UMAP service
const texts = ["Hello world", "OpenAI is amazing", "UMAP reduces dimensions"];
const embeddings = await getEmbeddings(texts);
fetch("/", {
headers: { "Content-Type": "application/json" },
body: JSON.stringify({
embeddings: embeddings,
config: { nNeighbors: 15, minDist: 0.1, spread: 1.0 }
})
function runDemo() {
const testData = {
embeddings: Array.from({length: 100}, () => Array.from({length: 10}, () => Math.
config: { nNeighbors: 15, minDist: 0.1, spread: 1.0 }
};
peterqliu
PineconeIndex
Vector db's on Pinecone, with OpenAI embeddings
Public
tmcw
surprisingEmbeddings
Visualizing embedding distances
Public
maxm
emojiVectorEmbeddings
 
Public
janpaul123
blogPostEmbeddingsDimensionalityReduction
 
Public
janpaul123
compareEmbeddings
 
Public

Users

No users found
No docs found
12
Next