FeaturesTemplatesShowcaseTownie
AI
BlogDocsPricing
Log inSign up
lantholin
lantholinYapTrap
Public
Like
YapTrap
Home
Code
8
backend
7
deployment
1
docs
2
frontend
1
shared
2
tests
1
README.md
H
main.ts
Branches
1
Pull requests
Remixes
History
Environment variables
7
Val Town is a collaborative website to build and scale JavaScript apps.
Deploy APIs, crons, & store data – all from the browser, and deployed in milliseconds.
Sign up now
Code
/
docs
/
SDD.md
Code
/
docs
/
SDD.md
Search
…
SDD.md

Software Design Document (SDD)

YapTrap Multi-Platform Chatbot System

Version: 1.0
Date: December 2024
Status: Draft

1. Introduction

1.1 Purpose

This document describes the software design for YapTrap, detailing the system architecture, component design, and implementation approach that satisfies the requirements specified in the SRS.

1.2 Scope

This design covers:

  • Overall system architecture and component relationships
  • Database schema and data flow design
  • Platform integration patterns and APIs
  • AI/LLM integration architecture
  • Administrative interface design
  • Monitoring and logging infrastructure

1.3 Design Principles

  • Modularity: Clear separation of concerns with well-defined interfaces
  • Scalability: Horizontal scaling capabilities within Val Town constraints
  • Reliability: Defensive programming with comprehensive error handling
  • Maintainability: Clean code with extensive testing and documentation
  • Security: Security-first design with data protection throughout

2. System Architecture

2.1 High-Level Architecture

┌─────────────────┐    ┌─────────────────┐    ┌─────────────────┐
│   Messaging     │    │   YapTrap       │    │   Admin         │
│   Platforms     │◄──►│   Core System   │◄──►│   Dashboard     │
│                 │    │                 │    │                 │
│ • Slack         │    │ • Message Proc  │    │ • Monitoring    │
│ • SMS/MMS       │    │ • AI Engine     │    │ • Configuration │
│ • Email         │    │ • Database      │    │ • Analytics     │
│ • WhatsApp      │    │ • Platform APIs │    │ • User Mgmt     │
└─────────────────┘    └─────────────────┘    └─────────────────┘
                                │
                       ┌─────────────────┐
                       │   External      │
                       │   Services      │
                       │                 │
                       │ • LLM APIs      │
                       │ • Database      │
                       │ • Monitoring    │
                       └─────────────────┘

2.2 Component Architecture

2.2.1 Core Components

  • Message Router: Central message processing and routing
  • Platform Handlers: Platform-specific integration modules
  • AI Engine: LLM integration and response generation
  • Personality Engine: User profiling and adaptation logic
  • Database Layer: Data persistence and retrieval
  • Admin Interface: Web-based management dashboard
  • Monitoring System: Logging, metrics, and health monitoring

2.2.2 Val Town Deployment Structure

backend/
├── index.ts              # Main HTTP entry point (Hono app)
├── database/
│   ├── schema.ts         # Database schema definitions
│   ├── queries.ts        # Database query functions
│   └── migrations.ts     # Schema migrations
├── platforms/
│   ├── base.ts          # Base platform handler interface
│   ├── slack.ts         # Slack integration
│   ├── sms.ts           # SMS/MMS via Telnyx
│   ├── email.ts         # Email via SendGrid
│   └── whatsapp.ts      # WhatsApp Business API
├── ai/
│   ├── engine.ts        # LLM integration layer
│   ├── personality.ts   # Personality analysis and profiling
│   └── context.ts       # Conversation context management
├── monitoring/
│   ├── logger.ts        # Centralized logging
│   ├── metrics.ts       # Performance and usage metrics
│   └── health.ts        # System health monitoring
└── routes/
    ├── webhooks.ts      # Platform webhook handlers
    ├── admin.ts         # Admin API endpoints
    └── static.ts        # Static file serving

frontend/
├── index.html           # Main admin dashboard
├── components/
│   ├── Dashboard.tsx    # Main dashboard component
│   ├── ConversationView.tsx
│   ├── MetricsView.tsx
│   └── ConfigView.tsx
└── styles/
    └── main.css

shared/
├── types.ts             # Shared TypeScript interfaces
├── utils.ts             # Common utility functions
└── constants.ts         # System constants and configuration

3. Database Design

3.1 Schema Overview

3.1.1 Core Tables

-- Conversations: Track group conversations across platforms CREATE TABLE conversations ( id TEXT PRIMARY KEY, platform TEXT NOT NULL, platform_id TEXT NOT NULL, name TEXT, created_at DATETIME DEFAULT CURRENT_TIMESTAMP, last_activity DATETIME, settings JSON, is_active BOOLEAN DEFAULT 1 ); -- Users: Individual participants across all conversations CREATE TABLE users ( id TEXT PRIMARY KEY, platform TEXT NOT NULL, platform_user_id TEXT NOT NULL, display_name TEXT, personality_profile JSON, preferences JSON, created_at DATETIME DEFAULT CURRENT_TIMESTAMP, updated_at DATETIME DEFAULT CURRENT_TIMESTAMP ); -- Messages: All messages in conversations CREATE TABLE messages ( id TEXT PRIMARY KEY, conversation_id TEXT NOT NULL, user_id TEXT, content TEXT NOT NULL, message_type TEXT DEFAULT 'user', -- 'user', 'yaptrap', 'system' platform_message_id TEXT, timestamp DATETIME DEFAULT CURRENT_TIMESTAMP, metadata JSON, FOREIGN KEY (conversation_id) REFERENCES conversations(id), FOREIGN KEY (user_id) REFERENCES users(id) ); -- Conversation Participants: Many-to-many relationship CREATE TABLE conversation_participants ( conversation_id TEXT NOT NULL, user_id TEXT NOT NULL, joined_at DATETIME DEFAULT CURRENT_TIMESTAMP, role TEXT DEFAULT 'member', -- 'member', 'admin', 'bot' is_active BOOLEAN DEFAULT 1, PRIMARY KEY (conversation_id, user_id), FOREIGN KEY (conversation_id) REFERENCES conversations(id), FOREIGN KEY (user_id) REFERENCES users(id) ); -- System Logs: Comprehensive logging for monitoring CREATE TABLE system_logs ( id TEXT PRIMARY KEY, timestamp DATETIME DEFAULT CURRENT_TIMESTAMP, level TEXT NOT NULL, -- 'debug', 'info', 'warn', 'error' component TEXT NOT NULL, message TEXT NOT NULL, metadata JSON, conversation_id TEXT, user_id TEXT ); -- Configuration: System and conversation-specific settings CREATE TABLE configuration ( key TEXT PRIMARY KEY, value JSON NOT NULL, scope TEXT DEFAULT 'global', -- 'global', 'conversation', 'user' scope_id TEXT, updated_at DATETIME DEFAULT CURRENT_TIMESTAMP, updated_by TEXT );

3.2 Data Flow Design

3.2.1 Message Processing Flow

  1. Webhook Reception: Platform sends message to webhook endpoint
  2. Message Normalization: Convert platform-specific format to internal format
  3. User/Conversation Resolution: Identify or create user and conversation records
  4. Context Analysis: Analyze message content and conversation context
  5. Response Decision: Determine if and how YapTrap should respond
  6. Response Generation: Generate appropriate response using AI engine
  7. Platform Delivery: Send response back through platform API
  8. Logging: Record all activities for monitoring and learning

3.2.2 Personality Learning Flow

  1. Message Analysis: Extract communication patterns and preferences
  2. Profile Update: Update user personality profile with new insights
  3. Group Dynamics: Analyze group interaction patterns
  4. Adaptation: Adjust YapTrap's behavior based on learned preferences

4. Component Design

4.1 Message Router (backend/routes/webhooks.ts)

interface MessageRouter { // Route incoming webhook messages to appropriate platform handlers routeMessage(platform: string, payload: any): Promise<void>; // Process normalized messages through the AI pipeline processMessage(message: NormalizedMessage): Promise<void>; // Determine response strategy based on context and configuration shouldRespond(context: ConversationContext): Promise<boolean>; }

4.2 Platform Handler Interface (backend/platforms/base.ts)

interface PlatformHandler { // Normalize incoming platform messages to internal format normalizeMessage(payload: any): Promise<NormalizedMessage>; // Send response back to platform sendMessage(conversationId: string, content: string): Promise<void>; // Handle platform-specific authentication and setup authenticate(): Promise<boolean>; // Validate webhook signatures and requests validateWebhook(payload: any, signature: string): boolean; }

4.3 AI Engine (backend/ai/engine.ts)

interface AIEngine { // Generate contextual response based on conversation history generateResponse(context: ConversationContext): Promise<string>; // Analyze message sentiment and intent analyzeMessage(message: NormalizedMessage): Promise<MessageAnalysis>; // Update conversation context with new message updateContext(context: ConversationContext, message: NormalizedMessage): Promise<ConversationContext>; }

4.4 Personality Engine (backend/ai/personality.ts)

interface PersonalityEngine { // Analyze user communication patterns analyzeUserPersonality(userId: string, messages: NormalizedMessage[]): Promise<PersonalityProfile>; // Update personality profile with new insights updatePersonalityProfile(userId: string, insights: PersonalityInsights): Promise<void>; // Get personality-adapted response style getResponseStyle(userId: string, groupContext: GroupContext): Promise<ResponseStyle>; }

5. API Design

5.1 Webhook Endpoints

// Platform webhook receivers POST /webhooks/slack # Slack events and messages POST /webhooks/sms # Telnyx SMS/MMS webhooks POST /webhooks/email # SendGrid inbound email POST /webhooks/whatsapp # WhatsApp Business API webhooks // Administrative endpoints GET /admin/conversations # List all conversations GET /admin/users # List all users GET /admin/metrics # System metrics and health POST /admin/config # Update configuration GET /admin/logs # Stream system logs

5.2 Internal API Interfaces

// Normalized message format across all platforms interface NormalizedMessage { id: string; conversationId: string; userId: string; content: string; timestamp: Date; platform: string; messageType: 'text' | 'image' | 'file' | 'system'; metadata: Record<string, any>; } // Conversation context for AI processing interface ConversationContext { conversationId: string; participants: User[]; recentMessages: NormalizedMessage[]; groupDynamics: GroupDynamics; yapTrapSettings: YapTrapSettings; } // User personality profile interface PersonalityProfile { userId: string; communicationStyle: CommunicationStyle; interests: string[]; responsePreferences: ResponsePreferences; groupRole: GroupRole; lastUpdated: Date; }

6. Security Design

6.1 Authentication and Authorization

  • Webhook Validation: Verify all incoming webhooks using platform-specific signatures
  • API Authentication: Secure admin endpoints with authentication tokens
  • Rate Limiting: Implement rate limiting to prevent abuse
  • Input Validation: Sanitize and validate all input data

6.2 Data Protection

  • Encryption: Encrypt sensitive data at rest and in transit
  • Access Control: Implement role-based access control for admin functions
  • Audit Logging: Log all data access and modifications
  • Data Retention: Implement configurable data retention policies

7. Monitoring and Logging Design

7.1 Logging Strategy

  • Structured Logging: Use consistent JSON format for all log entries
  • Log Levels: Implement debug, info, warn, error levels
  • Contextual Logging: Include conversation and user context in logs
  • Performance Logging: Track response times and system performance

7.2 Metrics Collection

  • Message Metrics: Track message volume, response rates, engagement
  • Performance Metrics: Monitor response times, error rates, throughput
  • User Metrics: Track user satisfaction, personality learning accuracy
  • System Metrics: Monitor resource usage, health status

8. Deployment Architecture

8.1 Val Town Deployment

  • Main Entry Point: Single HTTP handler in backend/index.ts
  • Environment Configuration: Use Val Town environment variables
  • Database: SQLite for development, external database for production
  • Static Assets: Serve admin interface through Val Town

8.2 External Dependencies

  • Database: External PostgreSQL or SQLite for data persistence
  • LLM Services: OpenAI, xAI, Claude APIs for AI functionality
  • Platform APIs: Direct integration with messaging platform APIs
  • Monitoring: External logging and metrics collection services

9. Error Handling and Recovery

9.1 Error Handling Strategy

  • Graceful Degradation: Continue operation with reduced functionality during failures
  • Retry Logic: Implement exponential backoff for transient failures
  • Circuit Breakers: Prevent cascade failures in external service calls
  • Fallback Responses: Provide default responses when AI services fail

9.2 Recovery Procedures

  • Automatic Recovery: Self-healing for common failure scenarios
  • Manual Intervention: Clear procedures for manual recovery
  • Data Recovery: Backup and restore procedures for data loss
  • Service Recovery: Procedures for restoring service after outages

10. Performance Considerations

10.1 Scalability Design

  • Stateless Design: All components designed for horizontal scaling
  • Caching Strategy: Cache frequently accessed data and AI responses
  • Database Optimization: Efficient queries and indexing strategy
  • Rate Limiting: Protect against overload and abuse

10.2 Performance Optimization

  • Response Time: Target sub-5-second response times
  • Concurrent Processing: Handle multiple conversations simultaneously
  • Resource Management: Efficient memory and CPU usage
  • Network Optimization: Minimize external API calls and data transfer

Document Control:

  • Author: Technical Architect
  • Reviewers: Senior Developer, DevOps Engineer
  • Approval: Technical Lead
  • Implementation Reference: All code must trace back to this design
  • Next Review: Upon major architectural changes
Go to top
X (Twitter)
Discord community
GitHub discussions
YouTube channel
Bluesky
Product
FeaturesPricing
Developers
DocsStatusAPI ExamplesNPM Package Examples
Explore
ShowcaseTemplatesNewest ValsTrending ValsNewsletter
Company
AboutBlogCareersBrandhi@val.town
Terms of usePrivacy policyAbuse contact
© 2025 Val Town, Inc.