Readme

Part of Val Town Semantic Search.

Uses Neon to search embeddings of all vals, using the pg_vector extension.

  • Call OpenAI to generate an embedding for the search query.
  • Query the vals_embeddings table in Neon using the cosine similarity operator.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
import { decode as base64Decode, encode as base64Encode } from "https://deno.land/std@0.166.0/encoding/base64.ts";
import { Client } from "https://deno.land/x/postgres/mod.ts";
import { db as allValsDb } from "https://esm.town/v/sqlite/db?v=9";
import { blob } from "https://esm.town/v/std/blob";
import OpenAI from "npm:openai";
const dimensions = 1536;
export default async function semanticSearchPublicVals(query) {
const client = new Client(Deno.env.get("NEON_URL_VALSEMBEDDINGS"));
await client.connect();
const openai = new OpenAI();
const queryEmbedding = (await openai.embeddings.create({
model: "text-embedding-3-small",
input: query,
dimensions,
})).data[0].embedding;
const embeddedBinaryString = `[${queryEmbedding.join(",")}]`;
const result = await client
.queryObject`SELECT id, embedding <=> ${embeddedBinaryString} AS distance FROM vals_embeddings ORDER BY embedding <=> ${embeddedBinaryString} LIMIT 50`;
return result.rows.map((row) => {
const [author_username, name, version] = row.id.split("!!");
return { author_username, name, version, similarity: 1 - parseFloat(row.distance) };
});
}
const exampleQuery = "check dynamicland website for changes and email me";
console.log(await semanticSearchPublicVals(exampleQuery));
Val Town is a social website to write and deploy JavaScript.
Build APIs and schedule functions from your browser.
Comments
Nobody has commented on this val yet: be the first!
June 17, 2024