Search

136 results found for embeddings (1276ms)

Code
127

import blogPostEmbeddingsDimensionalityReduction from "https://esm.town/v/janpaul123/blogPostEmb
export async function semanticSearchBlogPostPlot() {
{ parseHTML: p },
) => p(`<a>`));
const points = await blogPostEmbeddingsDimensionalityReduction();
const chart = Plot.plot({
document,
import OpenAI from "npm:openai";
export default async function blogPostEmbeddingsDimensionalityReduction() {
const points = [
"animal that barks",
const openai = new OpenAI();
async function getEmbedding(str) {
return (await openai.embeddings.create({
model: "text-embedding-3-large",
input: str,
})).data[0].embedding;
}
let embeddings = await blob.getJSON("blogPostEmbeddings");
if (!embeddings) {
embeddings = await Promise.all(points.map((point) => getEmbedding(point)));
await blob.setJSON("blogPostEmbeddings", embeddings);
}
const matrix = druid.Matrix.from(embeddings);
const dr = new druid.UMAP(matrix, {
n_neighbors: 2,
}
console.log(await blogPostEmbeddingsDimensionalityReduction());
Migrated from folder: semanticSearchBlogPost/blogPostEmbeddingsDimensionalityReduction
const cache = {};
async function getEmbedding(str) {
cache[str] = cache[str] || (await openai.embeddings.create({
model: "text-embedding-3-large",
input: str,
) as any;
// const allValsBlobEmbeddingsMeta = (await blob.getJSON(`allValsBlob${dimensions}EmbeddingsMeta
const allValsBlobEmbeddingsMeta = {};
const existingEmbeddingsIds = new Set(Object.keys(allValsBlobEmbeddingsMeta));
function idForVal(val: any): string {
for (const val of allVals) {
const id = idForVal(val);
if (!existingEmbeddingsIds.has(id)) {
currentBatch.push(val);
}
let nextDataIndex = Math.max(
0,
...Object.values(allValsBlobEmbeddingsMeta).map((item: any) => item.batchDataIndex + 1),
);
for (const newValsBatch of newValsBatches) {
const batchDataIndex = nextDataIndex;
const embeddingsBatch = new Float32Array(dimensions * newValsBatch.length);
await Promise.all([...Array(newValsBatch.length).keys()].map(async (valIndex) => {
const val = newValsBatch[valIndex];
const code = getValCode(val);
const embedding = await openai.embeddings.create({
model: "text-embedding-3-small",
input: truncateMessage(code, "text-embedding-3-small"),
const id = idForVal(val);
embeddingsBatch.set(embeddingBinary, dimensions * valIndex);
allValsBlobEmbeddingsMeta[id] = { batchDataIndex, valIndex };
}));
const embeddingsBatchBlobName = `allValsBlob${dimensions}EmbeddingsData_${batchDataIndex}`;
await blob.set(embeddingsBatchBlobName, embeddingsBatch.buffer);
await blob.setJSON(`allValsBlob${dimensions}EmbeddingsMeta`, allValsBlobEmbeddingsMeta);
console.log(
`Saved batch to ${embeddingsBatchBlobName} with ${newValsBatch.length} records (${embeddings
batchDataIndex + 1
}/${newValsBatches.length}`,
}
og(`Finished, we have indexed ${Object.keys(allValsBlobEmbeddingsMeta).length} records`);
export default async function semanticSearchPublicVals(query) {
const client = new Client(Deno.env.get("NEON_URL_VALSEMBEDDINGS"));
await client.connect();
const openai = new OpenAI();
const queryEmbedding = (await openai.embeddings.create({
model: "text-embedding-3-small",
input: query,
const embeddedBinaryString = `[${queryEmbedding.join(",")}]`;
const result = await client
ding <=> ${embeddedBinaryString} AS distance FROM vals_embeddings ORDER BY embedding <=> ${embed
return result.rows.map((row) => {
import { truncateMessage } from "npm:openai-tokens";
// CREATE TABLE vals_embeddings (id TEXT PRIMARY KEY, embedding VECTOR(1536));
export default async function() {
const dimensions = 1536;
const client = new Client(Deno.env.get("NEON_URL_VALSEMBEDDINGS"));
await client.connect();
) as any;
const existingEmbeddingsIds = new Set(
(await client.queryObject`SELECT id FROM vals_embeddings`).rows.map(row => row.id),
);
for (const val of allVals) {
const id = idForVal(val);
if (!existingEmbeddingsIds.has(id)) {
currentBatch.push(val);
}
const code = getValCode(val);
const embedding = await openai.embeddings.create({
model: "text-embedding-3-small",
input: truncateMessage(code, "text-embedding-3-small"),
const embeddedBinaryString = `[${embeddingBinary.join(",")}]`;
const result = await client
.queryObject`INSERT INTO vals_embeddings (id, embedding) VALUES (${id}, ${embeddedBinary
console.log(`Processed ${id}..`);
}));
Migrated from folder: semanticSearchBlogPost/compareEmbeddings
export const getBlurbFromUrl = async (url: string, {
getSummary=true, getSummaryPrompt, getTags=true, getTagsPrompt, getEmbeddings} = {}) => {
const content = await getContentFromUrl(url);
}
let summary, tags, embeddings
if(getSummary) {
summary = await getSummaryFn(getSummaryPrompt, content);
tags = await getTagsFn(getTagsPrompt, content);
}
if(getEmbeddings) {
embeddings = await getEmbeddingsFn(content);
}
summary: summary.text,
tags: tags.text,
embeddings
}
};
}
export const getEmbeddingsFn = async (content) => {
let result = await ai({
provider: "openai",
// const body = await c.req.parseBody() || await c.req.json();
const body = await c.req.json();
const { url, getTags, getTagsPrompt, getSummary, getSummaryPrompt, getEmbeddings } = body;
const content = await getContentFromUrl(url);
}
let summary, tags, embeddings
if(getSummary) {
summary = await getSummaryFn(getSummaryPrompt, content);
tags = await getTagsFn(getTagsPrompt, content);
}
if(getEmbeddings) {
embeddings = await getEmbeddingsFn(content);
}
return c.json({ summary: summary.text, tags: tags.text, content, embeddings, });
});
Todo
- Support lunr / semantic search, and embeddings
support pointing to multiple blobs, like {description, embeddings, fileblob, ...} with a shared
Migrated from folder: Libraries/blobby/blobby
tmcw
surprisingEmbeddings
Visualizing embedding distances
maxm
emojiVectorEmbeddings
 
janpaul123
blogPostEmbeddingsDimensionalityReduction
 
janpaul123
compareEmbeddings
 
yawnxyz
embeddingsSearchExample
 

Users

No users found
No docs found