Search

178 results found for embeddings (6620ms)

Code
168

contents: [query],
});
const values = result.embeddings[0].values;
const queryResult = (await qdrant.search("lyrics", {
vector: values,
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
/**
* Calculate similarity score between two texts using OpenAI embeddings
*/
export async function calculateSimilarity(text1: string, text2: string): Promise<number> {
const response = await openai.embeddings.create({
model: "text-embedding-3-small",
input: [text1, text2],
- **Frontend**: HTML, CSS (Tailwind), and TypeScript with React
- **Database**: SQLite for storing resumes and job requirements
- **NLP/ML**: OpenAI embeddings for semantic matching
## Project Structure
// Search for relevant memories based on a query
async function searchMemories(query: string): Promise<Array<{ id: number; content: string; tags:
Simple search implementation - could be improved with embeddings or more sophisticated search
const results = await sqlite.execute(
`SELECT * FROM ${MEMORY_TABLE} WHERE content LIKE ? OR tags LIKE ?`,
## Future Improvements
- Implement vector embeddings for more accurate memory retrieval
- Add memory management features (edit, delete, categorize)
- Improve search with semantic similarity rather than just text matching
async function main() {
const generateEmbeddings = await pipeline("feature-extraction");
const embeddings = await generateEmbeddings("Hello, World!");
console.log(embeddings);
}
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
"slug": "val-vibes",
"link": "/blog/val-vibes",
"description": "How to build semantic search with embeddings for Val Town within Val Town it
"pubDate": "Tue, 18 Jun 2024 00:00:00 GMT",
"author": "JP Posma",
peterqliu
PineconeIndex
Vector db's on Pinecone, with OpenAI embeddings
Public
tmcw
surprisingEmbeddings
Visualizing embedding distances
Public
maxm
emojiVectorEmbeddings
 
Public
janpaul123
blogPostEmbeddingsDimensionalityReduction
 
Public
janpaul123
compareEmbeddings
 
Public

Users

No users found
No docs found