Search

3,343 results found for openai (1711ms)

Code
3,248

import { Hono } from "npm:hono@4.4.12";
// @ts-ignore
import { OpenAI } from "https://esm.town/v/std/openai?v=4";
// --- TownCar: The JIT Journey Engine v1.1 (AI Concierge Service) ---
const app = new Hono();
async function callOpenAI(c, messages, response_format = { type: "text" }) {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: messages,
if (!completion || !completion.choices || completion.choices.length === 0) {
console.error("Invalid response from OpenAI API:", JSON.stringify(completion, null, 2));
throw new Error("The AI service returned an invalid or empty response.");
}
try {
const messages = [{ role: "system", content: META_PROMPTS.ROUTE_PLANNER.replace("{{goal}}",
const planJson = await callOpenAI(c, messages, { type: "json_object" });
return c.json(JSON.parse(planJson));
} catch (e) {
content: META_PROMPTS.ROUTE_PLANNER_RETRY.replace("{{goal}}", goal),
}];
const retryPlanJson = await callOpenAI(c, retryMessages, { type: "json_object" });
return c.json(JSON.parse(retryPlanJson));
} catch (retryError) {
content: META_PROMPTS.STOP_ARCHITECT.replace("{{task}}", task).replace("{{context}}", cont
}];
const specJson = await callOpenAI(c, architectMessages, { type: "json_object" });
const spec = JSON.parse(specJson);
if (spec.inputs && spec.inputs.length > 0) {
const uiBuilderMessages = [{ role: "system", content: META_PROMPTS.UI_BUILDER.replace("{{s
uiJson = await callOpenAI(c, uiBuilderMessages, { type: "json_object" });
}
const contextString = JSON.stringify(context, null, 2);
const specJson = await callOpenAI(c, [{
role: "system",
content: META_PROMPTS.STOP_ARCHITECT.replace("{{task}}", task).replace("{{context}}", co
}], { type: "json_object" });
let executionPrompt = await callOpenAI(c, [{
role: "system",
content: META_PROMPTS.LOGIC_WEAVER.replace("{{spec}}", specJson).replace("{{context}}",
}
const openai = new OpenAI();
const aiStream = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "user", content: executionPrompt }],
import { Hono } from "npm:hono@4.4.12";
// @ts-ignore
import { OpenAI } from "https://esm.town/v/std/openai?v=4";
// @ts-ignore
import { blob } from "https://esm.town/v/std/blob";
// --- HELPER FUNCTIONS ---
async function callOpenAI(messages, response_format = { type: "text" }) {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: messages,
try {
const planMessages = [{ role: "system", content: META_PROMPTS.WORKFLOW_PLANNER.replace("{{go
const planJson = await callOpenAI(planMessages, { type: "json_object" });
let plan = JSON.parse(planJson);
for (const step of plan.steps) {
const contextString = JSON.stringify(stepContext, null, 2);
const specJson = await callOpenAI(
[{
role: "system",
{ type: "json_object" },
);
const executionPrompt = await callOpenAI([{
role: "system",
content: META_PROMPTS.LOGIC_WEAVER.replace("{{spec}}", specJson).replace("{{context}}",
}]);
const stepOutput = await callOpenAI([{ role: "user", content: executionPrompt }]);
const outputKey = `step_${step.id}_output`;
stepContext[outputKey] = stepOutput;
try {
const messages = [{ role: "system", content: META_PROMPTS.WORKFLOW_PLANNER.replace("{{goal}}
const planJson = await callOpenAI(messages, { type: "json_object" });
let plan = JSON.parse(planJson);
if (Array.isArray(plan)) {
try {
const contextString = JSON.stringify(taskData.metadata.context, null, 2);
const specJson = await callOpenAI(
[{
role: "system",
{ type: "json_object" },
);
let executionPrompt = await callOpenAI([{
role: "system",
content: META_PROMPTS.LOGIC_WEAVER.replace("{{spec}}", specJson).replace("{{context}}", co
}]);
const stepOutput = await callOpenAI([{ role: "user", content: executionPrompt }]);
// Create a new compliant artifact for the step output
import { Hono } from "npm:hono@4.4.12";
// @ts-ignore
import { OpenAI } from "https://esm.town/v/std/openai?v=4";
// --- Emergent: The JIT Workflow Engine v3.0 (Autonomous Task Architect) ---
const app = new Hono();
async function callOpenAI(c, messages, response_format = { type: "text" }) {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: messages,
if (!completion || !completion.choices || completion.choices.length === 0) {
console.error("Invalid response from OpenAI API:", JSON.stringify(completion, null, 2));
throw new Error("The AI service returned an invalid or empty response.");
}
try {
const messages = [{ role: "system", content: META_PROMPTS.WORKFLOW_PLANNER.replace("{{goal}}
const planJson = await callOpenAI(c, messages, { type: "json_object" });
return c.json(JSON.parse(planJson));
} catch (e) {
content: META_PROMPTS.WORKFLOW_PLANNER_RETRY.replace("{{goal}}", goal),
}];
const retryPlanJson = await callOpenAI(c, retryMessages, { type: "json_object" });
return c.json(JSON.parse(retryPlanJson));
} catch (retryError) {
content: META_PROMPTS.TASK_ARCHITECT.replace("{{task}}", task).replace("{{context}}", cont
}];
const specJson = await callOpenAI(c, architectMessages, { type: "json_object" });
const spec = JSON.parse(specJson);
if (spec.inputs && spec.inputs.length > 0) {
const uiBuilderMessages = [{ role: "system", content: META_PROMPTS.UI_BUILDER.replace("{{s
uiJson = await callOpenAI(c, uiBuilderMessages, { type: "json_object" });
}
const contextString = JSON.stringify(context, null, 2);
const specJson = await callOpenAI(c, [{
role: "system",
content: META_PROMPTS.TASK_ARCHITECT.replace("{{task}}", task).replace("{{context}}", co
}], { type: "json_object" });
let executionPrompt = await callOpenAI(c, [{
role: "system",
content: META_PROMPTS.LOGIC_WEAVER.replace("{{spec}}", specJson).replace("{{context}}",
}
const openai = new OpenAI();
const aiStream = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "user", content: executionPrompt }],
- **Blob storage**: `import { blob } from "https://esm.town/v/std/blob"`
- **SQLite**: `import { sqlite } from "https://esm.town/v/stevekrouse/sqlite"`
- **OpenAI**: `import { OpenAI } from "https://esm.town/v/std/openai"`
- **Email**: `import { email } from "https://esm.town/v/std/email"`
- **Blob storage**: `import { blob } from "https://esm.town/v/std/blob"`
- **SQLite**: `import { sqlite } from "https://esm.town/v/stevekrouse/sqlite"`
- **OpenAI**: `import { OpenAI } from "https://esm.town/v/std/openai"`
- **Email**: `import { email } from "https://esm.town/v/std/email"`
import { Hono } from "npm:hono@4.4.12";
// @ts-ignore
import { OpenAI } from "https://esm.town/v/std/openai?v=4";
// --- Banks 7/22/2025. For Leo & Niko. Bugfix for API calls. Final version. <3
// --- josh@dereticular.com
const userInput = `Occupation: ${occupation.title}, Task: ${task.task}`;
try {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "system", content: PROMPT_REFINER_SYSTEM_PROMPT }, { role: "user", cont
if (!refined_prompt) return c.json({ error: "refined_prompt is required" }, 400);
try {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "system", content: INPUT_EXTRACTOR_SYSTEM_PROMPT }, { role: "user", con
try {
const openai = new OpenAI();
const taskCompletion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "user", content: finalUserPrompt }],
if (!taskOutput) throw new Error("The AI returned no content.");
const htmlCompletion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "system", content: HTML_FORMATTER_SYSTEM_PROMPT }, { role: "user", cont
join/dental/main.tsx
14 matches
import { Hono } from "npm:hono@4.4.12";
// @ts-ignore
import { OpenAI } from "https://esm.town/v/std/openai?v=4";
// --- Banks 7/22/2025. Dental Practice AI Task Automator.
// --- josh@dereticular.com
const userInput = `Occupation: ${occupation.title}, Task: ${task.task}`;
try {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "system", content: PROMPT_REFINER_SYSTEM_PROMPT }, { role: "user", cont
const userInput = `Occupation: ${occupation_title}, Task: ${task}`;
try {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "system", content: PROMPT_REFINER_SYSTEM_PROMPT }, { role: "user", cont
if (!refined_prompt) return c.json({ error: "refined_prompt is required" }, 400);
try {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [{ role: "system", content: INPUT_EXTRACTOR_SYSTEM_PROMPT }, { role: "user", con
const userInput = JSON.stringify({ type: "occupations", industry: industry });
try {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [
const userInput = JSON.stringify({ type: "tasks", occupation: occupation_name });
try {
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [
try {
const openai = new OpenAI();
const agentCompletion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [
throw new Error("The agent returned no content.");
}
const htmlCompletion = await openai.chat.completions.create({
model: "gpt-4o",
messages: [
Note: When changing a SQLite table's schema, change the table's name (e.g., add _2 or _3) to cre
### OpenAI
```ts
import { OpenAI } from "https://esm.town/v/std/openai";
const openai = new OpenAI();
const completion = await openai.chat.completions.create({
messages: [
{ role: "user", content: "Say hello in a creative way" },
id: string;
name: string;
type: 'yahoo_api' | 'openai' | 'processing';
status: 'pending' | 'loading' | 'success' | 'error';
startTime?: string;
stepType = 'yahoo_api';
break;
case 'openai_request':
stepId = 'openai_request';
stepName = 'OpenAI Analysis Request';
stepType = 'openai';
break;
case 'openai_response':
stepId = 'openai_response';
stepName = 'OpenAI Analysis Response';
stepType = 'openai';
break;
case 'performance':
timestamp: string;
sessionId: string;
type: 'yahoo_api' | 'mlb_data' | 'openai_request' | 'openai_response' | 'error' | 'performance
userId?: string;
leagueId?: string;
summary?: {
yahooApiCalls: number;
openaiRequests: number;
totalTokensUsed: number;
errors: number;
/**
* Log OpenAI request with full prompt
*/
logOpenAiRequest(model: string, prompt: string, requestConfig: any, retryAttempt: number = 0):
this.addLogEntry({
type: 'openai_request',
data: {
model,
/**
* Log OpenAI response with full content
*/
logOpenAiResponse(model: string, response: string, executionTime: number, tokenCount?: number)
this.addLogEntry({
type: 'openai_response',
data: {
model,
const yahooEntries = session.entries.filter(e => e.type === 'yahoo_api');
const openaiRequests = session.entries.filter(e => e.type === 'openai_request');
const openaiResponses = session.entries.filter(e => e.type === 'openai_response');
const errors = session.entries.filter(e => e.type === 'error');
## AI Processing
- OpenAI Requests: ${openaiRequests.length}
- OpenAI Responses: ${openaiResponses.length}
- Total Tokens Used: ${openaiResponses.reduce((sum, e) => sum + (e.metadata?.tokenCount || 0), 0
- Average AI Response Time: ${openaiResponses.length > 0 ? Math.round(openaiResponses.reduce((su
## Errors
/**
* Extract all OpenAI prompts and responses for analysis
*/
extractOpenAiData(sessionId: string): any {
const session = this.sessions.get(sessionId);
if (!session) return null;
const openaiRequests = session.entries.filter(e => e.type === 'openai_request');
const openaiResponses = session.entries.filter(e => e.type === 'openai_response');
return {
sessionId,
timestamp: session.startTime,
requests: openaiRequests.map((entry, index) => ({
requestId: index,
timestamp: entry.timestamp,
config: entry.data.config
})),
responses: openaiResponses.map((entry, index) => ({
responseId: index,
timestamp: entry.timestamp,
const yahooData = this.extractYahooData(sessionId);
const openaiData = this.extractOpenAiData(sessionId);
return `
- Total Data Collected: ${yahooData?.yahooApiCalls?.reduce((sum, call) => sum + (call.dataSize |
## OpenAI Processing Quality
- Requests Made: ${openaiData?.requests?.length || 0}
- Responses Received: ${openaiData?.responses?.length || 0}
- Average Prompt Length: ${openaiData?.requests?.reduce((sum, req) => sum + (req.promptLength ||
- Parse Success Rate: ${openaiData?.responses?.filter(r => r.parsedSuccessfully).length / (opena
- Average Response Time: ${openaiData?.responses?.reduce((sum, res) => sum + (res.executionTime
## Recommendations for Prompt Optimization
${this.generatePromptOptimizationRecommendations(openaiData)}
`;
}
},
yahooData: this.extractYahooData(sessionId),
openaiData: this.extractOpenAiData(sessionId),
performance: session.entries.filter(e => e.type === 'performance'),
errors: session.entries.filter(e => e.type === 'error'),
private generateSessionSummary(session: LogSession): LogSession['summary'] {
const yahooApiCalls = session.entries.filter(e => e.type === 'yahoo_api').length;
const openaiRequests = session.entries.filter(e => e.type === 'openai_request').length;
const totalTokensUsed = session.entries
.filter(e => e.type === 'openai_response')
.reduce((sum, e) => sum + (e.metadata?.tokenCount || 0), 0);
const errors = session.entries.filter(e => e.type === 'error').length;
return {
yahooApiCalls,
openaiRequests,
totalTokensUsed,
errors,
private calculateDataQualityScore(session: LogSession): number {
// Simple scoring based on successful responses and data completeness
entries.filter(e => e.type === 'yahoo_api' || e.type === 'openai_request').length;
const errors = session.entries.filter(e => e.type === 'error').length;
essfulResponses = session.entries.filter(e => e.type === 'openai_response' && e.data.parsedSucce
if (totalRequests === 0) return 0;
const errorRate = errors / totalRequests;
essfulResponses / session.entries.filter(e => e.type === 'openai_request').length;
return Math.round((1 - errorRate) * successRate * 100);
private analyzeDataQuality(session: LogSession): string {
const yahooEntries = session.entries.filter(e => e.type === 'yahoo_api');
const openaiResponses = session.entries.filter(e => e.type === 'openai_response');
const insights = [];
}
if (openaiResponses.length > 0) {
const successfulParses = openaiResponses.filter(e => e.data.parsedSuccessfully).length;
const parseSuccessRate = (successfulParses / openaiResponses.length) * 100;
insights.push(`- OpenAI JSON parse success rate: ${Math.round(parseSuccessRate)}%`);
}
const yahooEntries = session.entries.filter(e => e.type === 'yahoo_api');
const openaiRequests = session.entries.filter(e => e.type === 'openai_request');
const openaiResponses = session.entries.filter(e => e.type === 'openai_response');
const errors = session.entries.filter(e => e.type === 'error');
// Check for large prompts
const avgPromptSize = openaiRequests.reduce((sum, e) => sum + (e.data.promptLength || 0), 0)
if (avgPromptSize > 5000) {
recommendations.push('- Consider reducing prompt size for faster OpenAI responses');
}
// Check for parsing errors
const parseFailures = openaiResponses.filter(e => !e.data.parsedSuccessfully).length;
if (parseFailures > 0) {
recommendations.push('- Improve prompt clarity to reduce JSON parsing failures');
// Check for slow responses
const slowResponses = openaiResponses.filter(e => (e.metadata?.executionTime || 0) > 15000).
if (slowResponses > 0) {
recommendations.push('- Consider using a faster OpenAI model or reducing prompt complexity
}
}
private generatePromptOptimizationRecommendations(openaiData: any): string {
if (!openaiData?.requests?.length) {
return '- No OpenAI requests to analyze';
}
const recommendations = [];
const avgPromptLength = openaiData.requests.reduce((sum: number, req: any) => sum + (req.pro
const avgResponseTime = openaiData.responses?.reduce((sum: number, res: any) => sum + (res.e
const parseSuccessRate = (openaiData.responses?.filter((r: any) => r.parsedSuccessfully).len
if (avgPromptLength > 8000) {