Search
Code3,246
import { Hono } from "npm:hono@4.4.12";import type { Context } from "npm:hono@4.4.12";import { OpenAI } from "npm:openai@4.52.7";// --- TYPE DEFINITIONS --- if (!industry) return c.json({ error: "Industry is a required field." }, 400); try { const openai = new OpenAI(); const completion = await openai.chat.completions.create({ model: "gpt-4o", messages: [{ role: "system", content: DYNAMIC_LIST_GENERATOR_PROMPT }, { if (!occupation) return c.json({ error: "Occupation is a required field." }, 400); try { const openai = new OpenAI(); const completion = await openai.chat.completions.create({ model: "gpt-4o", messages: [{ role: "system", content: DYNAMIC_LIST_GENERATOR_PROMPT }, { const userInput = `Occupation: ${occupation_title}, Task: ${task}`; try { const openai = new OpenAI(); const completion = await openai.chat.completions.create({ model: "gpt-4o", messages: [{ role: "system", content: PROMPT_REFINER_SYSTEM_PROMPT }, { role: "user", content: userInput }], if (!refined_prompt) return c.json({ error: "refined_prompt is required" }, 400); try { const openai = new OpenAI(); const completion = await openai.chat.completions.create({ model: "gpt-4o", messages: [{ role: "system", content: INPUT_EXTRACTOR_SYSTEM_PROMPT }, { try { const openai = new OpenAI(); const agentCompletion = await openai.chat.completions.create({ model: "gpt-4o", messages: [{ role: "system", content: finalUserPrompt }, { if (!agentOutput) throw new Error("The agent returned no content."); const htmlCompletion = await openai.chat.completions.create({ model: "gpt-4o", messages: [{ role: "system", content: HTML_FORMATTER_SYSTEM_PROMPT }, { role: "user", content: agentOutput }],
// @ts-ignoreimport { OpenAI } from "https://esm.town/v/std/openai?v=4";import { Hono } from "npm:hono@4.4.12";// --- BACKEND LOGIC ---const app = new Hono();const openai = new OpenAI();async function generatePersonaPrompt(occupation: string, task: string) { const completion = await openai.chat.completions.create({ model: "gpt-4o", messages: [ error: "Quota Exceeded", message: "The application's OpenAI quota has been exceeded. Please check the account dashboard on the OpenAI platform.", }, 429); } const { image } = await c.req.json(); if (!image) return c.json({ error: "Image is required." }, 400); const completion = await openai.chat.completions.create({ model: "gpt-4o", messages: [ } const completion = await openai.chat.completions.create({ model: "gpt-4o", messages: history,
Note: When changing a SQLite table's schema, change the table's name (e.g., add _2 or _3) to create a fresh table.### OpenAI```tsimport { OpenAI } from "https://esm.town/v/std/openai";const openai = new OpenAI();const completion = await openai.chat.completions.create({messages: [{ role: "user", content: "Say hello in a creative way" },
Note: When changing a SQLite table's schema, change the table's name (e.g., add _2 or _3) to create a fresh table.### OpenAI```tsimport { OpenAI } from "https://esm.town/v/std/openai";const openai = new OpenAI();const completion = await openai.chat.completions.create({ messages: [ { role: "user", content: "Say hello in a creative way" },
import { Hono } from "npm:hono@4.4.12";// @ts-ignoreimport { OpenAI } from "https://esm.town/v/std/openai?v=4";// --- META-PROMPTS: The Engine's Core Logic ---// --- BACKEND: The Hono API ---const app = new Hono();const openai = new OpenAI();async function getOpenAIResponse(systemPrompt, userMessages, jsonResponse = false) { try { const response = await openai.chat.completions.create({ model: "gpt-4-turbo", messages: [ return response.choices[0].message.content; } catch (e) { console.error("OpenAI API error:", e.message); throw new Error("Failed to get response from AI model."); }}async function getOpenAIStream(systemPrompt, luggage) { let finalPrompt = systemPrompt; for (const key in luggage) { } return openai.chat.completions.create({ model: "gpt-4o", messages: [{ role: "system", content: finalPrompt }], const plannerPrompt = fillPrompt(META_PROMPTS.ROUTE_PLANNER, { goal }); try { let itineraryJson = await getOpenAIResponse(plannerPrompt, [], true); let itinerary = JSON.parse(itineraryJson); if (!itinerary.stops || itinerary.stops.length === 0 || itinerary.stops.length > 5) { const retryPrompt = fillPrompt(META_PROMPTS.ROUTE_PLANNER_RETRY, { goal }); itineraryJson = await getOpenAIResponse(retryPrompt, [], true); itinerary = JSON.parse(itineraryJson); } // 1. Get the task specification from STOP_ARCHITECT const specPrompt = fillPrompt(META_PROMPTS.STOP_ARCHITECT, { context, task }); const specJson = await getOpenAIResponse(specPrompt, [], true); const spec = JSON.parse(specJson); if (spec.inputs && spec.inputs.length > 0) { const uiPrompt = fillPrompt(META_PROMPTS.UI_BUILDER, { spec: specJson }); const uiSchemaJson = await getOpenAIResponse(uiPrompt, [], true); uiSchema = JSON.parse(uiSchemaJson); } // 3. Get the final execution prompt from LOGIC_WEAVER const logicPrompt = fillPrompt(META_PROMPTS.LOGIC_WEAVER, { context, spec: specJson }); const prompt = await getOpenAIResponse(logicPrompt, []); return c.json({ spec, uiSchema, prompt }); const { prompt, luggage } = await c.req.json(); try { const stream = await getOpenAIStream(prompt, luggage); return new Response(stream.toReadableStream(), { headers: { "Content-Type": "text/event-stream" },
} const { OpenAI } = await import("https://esm.town/v/std/openai"); const { sqlite } = await import("https://esm.town/v/stevekrouse/sqlite"); const openai = new OpenAI(); const KEY = new URL(import.meta.url).pathname.split("/").at(-1); const prompt = `You are an emoji summarizer. Respond with exactly ${count} emojis that summarize the given text. No other words.`; const res = await openai.chat.completions.create({ model: "gpt-4-mini", messages: [
url: "https://dcm31--8f68e410697611f092f30224a6c84d84.web.val.run"author: "dcm31"tags: ["emoji", "openai", "val-town", "api"]---
Note: When changing a SQLite table's schema, change the table's name (e.g., add _2 or _3) to create a fresh table.### OpenAI```tsimport { OpenAI } from "https://esm.town/v/std/openai";const openai = new OpenAI();const completion = await openai.chat.completions.create({ messages: [ { role: "user", content: "Say hello in a creative way" },
## ✨ Features- ✅ **AI-Powered Conversion**: Uses OpenAI GPT-4o-mini to intelligently convert questions- ✅ **Smart Caching**: Stores results to avoid redundant API calls- ✅ **Rate Limiting**: Respects Val Town's OpenAI API limits (50 requests/minute)- ✅ **TypeScript SDK**: Clean, typed interface for easy integration- ✅ **Batch Processing**: Convert multiple questions with built-in rate limiting## ⚡ Rate LimitingThe API includes intelligent rate limiting to respect Val Town's OpenAI API limits:- **50 requests per minute** maximum## 🔧 Technical Details- **AI Model**: OpenAI GPT-4o-mini (via Val Town's built-in OpenAI integration)- **Database**: SQLite for caching (via Val Town's SQLite integration)- **Framework**: Hono for the web API
import { Hono } from "npm:hono";import { cors } from "npm:hono/cors";import { OpenAI } from "https://esm.town/v/std/openai";import { sqlite } from "https://esm.town/v/stevekrouse/sqlite";let requestCount = 0;let resetTime = Date.now() + 60000; // Reset every minuteconst RATE_LIMIT = 50; // Conservative limit per minute for OpenAIasync function checkRateLimit(): Promise<boolean> { } const openai = new OpenAI(); const prompt = `Convert this "when will" question into a declarative statement suitable for a timeline, removing the question format but keeping the core prediction intact. try { const completion = await openai.chat.completions.create({ messages: [{ role: "user", content: prompt }], model: "gpt-4o-mini", return statement; } catch (error) { console.error("OpenAI API error:", error); throw new Error("Failed to convert question to statement"); }
reconsumeralization
import { OpenAI } from "https://esm.town/v/std/openai";
import { sqlite } from "https://esm.town/v/stevekrouse/sqlite";
/**
* Practical Implementation of Collective Content Intelligence
* Bridging advanced AI with collaborative content creation
*/
exp
kwhinnery_openai
lost1991
import { OpenAI } from "https://esm.town/v/std/openai";
export default async function(req: Request): Promise<Response> {
if (req.method === "OPTIONS") {
return new Response(null, {
headers: {
"Access-Control-Allow-Origin": "*",
No docs found