Search

3,359 results found for openai (1961ms)

Code
3,264

// Fetch AI-powered weather insight
const { OpenAI } = await import("https://esm.town/v/std/openai");
const openai = new OpenAI();
const aiResponse = await openai.chat.completions.create({
messages: [
{
// Fetch AI-powered weather insight
const { OpenAI } = await import("https://esm.town/v/std/openai");
const openai = new OpenAI();
const aiResponse = await openai.chat.completions.create({
messages: [
{
Frontend: React 18, TailwindCSS
APIs: Open-Meteo, OpenAI GPT-4o
Hosting: ESM-based module imports
export default async function server(request: Request): Promise<Response> {
const { OpenAI } = await import("https://esm.town/v/std/openai");
// Enhanced server-side logging
}
const openai = new OpenAI();
const url = new URL(request.url);
// Call AgentA to create the tool definition
const agentACompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
`;
const agentBCompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
});
// Use AgentB (a separate OpenAI instance) to process the tool request
const agentBPrompt = `
You are AgentB, a specialized tool agent designed to process specific information reques
`;
const agentBCompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
});
// Fallback response if OpenAI fails
let agentAResponse: AgentResponse = {
actionType: "direct_response",
`;
const agentACompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
web/base/main.tsx
8 matches
export default async function server(request: Request): Promise<Response> {
const { OpenAI } = await import("https://esm.town/v/std/openai");
const { sqlite } = await import("https://esm.town/v/stevekrouse/sqlite");
};
const openai = new OpenAI();
const KEY = extractKey(new URL(import.meta.url));
const SCHEMA_VERSION = 3; // Increment schema version for tool support
// Call AgentA to create the tool definition
const agentACompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
`;
const agentBCompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
}
// Use AgentB (a separate OpenAI instance) to process the tool request
const agentBPrompt = `
You are AgentB, a specialized tool agent designed to process specific information reques
`;
const agentBCompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
});
// Fallback response if OpenAI fails
let agentAResponse: AgentResponse = {
actionType: "direct_response",
`;
const agentACompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
export default async function server(request: Request): Promise<Response> {
const { OpenAI } = await import("https://esm.town/v/std/openai");
const { sqlite } = await import("https://esm.town/v/stevekrouse/sqlite");
const openai = new OpenAI();
const url = new URL(request.url);
const path = url.pathname.split("/").filter(Boolean);
`;
const completion = await openai.chat.completions.create({
model: "gpt-4o-mini",
messages: [{ role: "user", content: componentPrompt }],
"description": "A sample blah manifest demonstrating various tool types and configurations."
"env": {
"OPENAI_API_KEY": Deno.env.get("OPENAI_API_KEY"),
},
"tools": [
import { openai } from "npm:@ai-sdk/openai";
import { generateText } from "npm:ai";
try {
const { text: fact } = await generateText({
model: openai("gpt-4o-mini"),
system: "You are an expert in conspiracy.",
prompt: `Provide an interesting conspiracy for fun`,
# askSMHI
Using OpenAI chat completion with function calls to [SMHI](https://en.wikipedia.org/wiki/Swedish
The API is instructed to use the current time in Europe/Stockholm timezone.
## Relevant API documentation
* [SMHI, forecast documentation](https://opendata.smhi.se/apidocs/metfcst/get-forecast.html)
AI, GPT function calling documentation](https://platform.openai.com/docs/guides/function-callin
## How to use this endpoint
## Enviroment variables
* OPENAI_CHAT: Needs to be authorized to write chat completions and to the moderation API.
## Packages used
* openai: For typesafe API request and responses
* valibot: for describing the SMHI API response and function API input
* valibot/to-json-schema: Transform the schema to json schema (readable by the GPT API)
import { offset, removeOffset } from "npm:@formkit/tempo";
import { isWithinTokenLimit } from "npm:gpt-tokenizer/model/gpt-4o";
import { OpenAI } from "npm:openai";
import * as v from "npm:valibot";
import { openAIModeration } from "./gpt/moderation";
import { getWeatherAtCoordinate } from "./smhi/forecast/service";
import { getSmhiForecastResponseZodSchema } from "./smhi/schema";
return { error: "Too many tokens in question" };
}
const { flagged } = await openAIModeration([question]);
if (flagged) {
return { error: "Be nice in your question" };
}[],
};
const openai = new OpenAI({ apiKey: process.env.OPENAI_CHAT });
const completion = await openai.chat.completions.create({
model: completionOptions.model,
store: completionOptions.store,
}]
: [];
const formattedFunctionResponseData = await openai.chat.completions.create({
model: completionOptions.model,
store: completionOptions.store,