Search

3,275 results found for openai (2866ms)

Code
3,180

}
// Dynamically import OpenAI with error handling
let OpenAI;
try {
const module = await import("https://esm.town/v/std/openai");
OpenAI = module.OpenAI;
} catch (importError) {
console.error("OpenAI Import Error:", importError);
return new Response(
JSON.stringify({
error: "Failed to import OpenAI module",
details: String(importError),
}),
}
// Ensure OpenAI is available
if (!OpenAI) {
return new Response(
JSON.stringify({
error: "OpenAI module not found",
}),
{
}
// Create OpenAI instance
const openai = new OpenAI();
// Create OpenAI completion with comprehensive error handling
let completion;
try {
completion = await openai.chat.completions.create({
messages: body.messages,
model: "gpt-4o-mini",
});
} catch (completionError) {
console.error("OpenAI Completion Error:", completionError);
return new Response(
JSON.stringify({
api/mando/main.tsx
8 matches
export default async function server(request: Request): Promise<Response> {
const { OpenAI } = await import("https://esm.town/v/std/openai");
const { sqlite } = await import("https://esm.town/v/stevekrouse/sqlite");
};
const openai = new OpenAI();
const KEY = extractKey(new URL(import.meta.url));
const SCHEMA_VERSION = 3; // Increment schema version for tool support
// Call Maverick to create the tool definition
const maverickCompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
`;
const oracleCompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
`;
const agentBCompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
`;
const agentBCompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
// Make completion call with the appropriate agent prompt
const analysisCompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
// Make completion call with the appropriate agent prompt
const agentCompletion = await openai.chat.completions.create({
model: "gpt-4o-mini",
response_format: { type: "json_object" },
import { sqlite } from "https://esm.town/v/stevekrouse/sqlite";
import OpenAI from "openai";
import { ITERATIONS_TABLE, KEY, PROJECTS_TABLE, SCHEMA_VERSION } from "./migrations";
const openai = new OpenAI({ apiKey: Deno.env.get("OPENAI_API_KEY") });
export async function createProject(prompt: string) {
}
// Example of using OpenAI (you'll need to adapt this to your specific use case)
export async function generateText(prompt: string) {
try {
const completion = await openai.chat.completions.create({
messages: [{ role: "user", content: prompt }],
model: "gpt-4-turbo-preview",
return completion.choices[0].message?.content || "No response";
} catch (error) {
console.error("OpenAI Error:", error);
return "Error generating text";
}
import { sqlite } from "https://esm.town/v/stevekrouse/sqlite";
import OpenAI from "openai";
import { ITERATIONS_TABLE, KEY, PROJECTS_TABLE, SCHEMA_VERSION } from "./migrations";
const openai = new OpenAI({ apiKey: Deno.env.get("OPENAI_API_KEY") });
export async function createProject(prompt: string) {
}
// Example of using OpenAI (you'll need to adapt this to your specific use case)
export async function generateText(prompt: string) {
try {
const completion = await openai.chat.completions.create({
messages: [{ role: "user", content: prompt }],
model: "gpt-4-turbo-preview",
return completion.choices[0].message?.content || "No response";
} catch (error) {
console.error("OpenAI Error:", error);
return "Error generating text";
}
import OpenAI from "openai";
import STARTER_PROMPTS from "../public/starter-prompts.js";
};
} else {
const openai = new OpenAI({
apiKey: Deno.env.get(
"sk-proj-ZtUrkrgehmheVOjh8bsVN819ZlL5MbayyAGX_Dt5UyBRt8NyG_LGTo6VyIguEDLU3HNfQaWe4AT3Blb
),
});
const completion = await openai.chat.completions.create({
messages: [
{
},
].filter(Boolean),
model: "gpt-4-turbo-preview", // Or another suitable OpenAI model
max_tokens: 2000, // Adjust as needed
});
return {
code: extractCodeFromFence(completion.choices[0].message.content),
time: 0, // OpenAI doesn't directly provide completion time
totalTokens: completion.usage?.total_tokens || 1,
};
export default async function server(request: Request): Promise<Response> {
if (request.method === "POST" && new URL(request.url).pathname === "/chat") {
const { OpenAI } = await import("https://esm.town/v/std/openai");
const openai = new OpenAI();
const { messages, rawInput } = await request.json();
];
const stream = await openai.chat.completions.create({
model: "gpt-4o-mini",
messages: constrainedMessages,
setIsLoading(true);
try {
const { OpenAI } = await import("https://esm.town/v/std/openai");
const openai = new OpenAI();
const analysisPrompt = `Comprehensive Medical Report Analysis:
Respond with a structured, compassionate, and informative analysis that prioritizes patient unde
const analysis = await openai.chat.completions.create({
model: "gpt-4o-mini",
messages: [
export default async function server(request: Request): Promise<Response> {
if (request.method === 'POST' && new URL(request.url).pathname === '/chat') {
const { OpenAI } = await import("https://esm.town/v/std/openai");
const openai = new OpenAI();
const { messages } = await request.json();
const stream = await openai.chat.completions.create({
model: "gpt-4o-mini",
messages: messages,
import { openai } from "npm:@ai-sdk/openai";
import { generateText } from "npm:ai";
try {
const { text: compliments } = await generateText({
model: openai("gpt-4o-mini"),
system: "You are a creative compliment generator.",
prompt: "Generate 5 unique, thoughtful, and specific compliments about a person named Trav
import { openai } from "npm:@ai-sdk/openai";
import { generateText } from "npm:ai";
import { openai } from "npm:@ai-sdk/openai";
import { generateText } from "npm:ai";
const { text: generatedCompliment } = await generateText({
model: openai("gpt-4o-mini"),
system: "You are a creative compliment generator.",
prompt: `Generate a compliment for: ${compliment}`,