Search
Code3,281
// Telegram Bot that uses OpenAI's DALL-E to generate imagesimport { OpenAI } from "https://esm.town/v/std/openai";// Initialize OpenAI clientconst openai = new OpenAI();// Telegram Bot API types}// Function to generate an image using OpenAI's DALL-Easync function generateImage(prompt: string) { try { const response = await openai.images.generate({ model: "dall-e-3", prompt: prompt, chatId, "👋 Welcome to the Image Generation Bot!\n\n" + "I can generate images based on your descriptions using OpenAI's DALL-E model.\n\n" + "Simply send me a description of the image you want to create, and I'll generate it for you.\n\n" + "For example: *A serene lake surrounded by mountains at sunset*"
Note: When changing a SQLite table's schema, change the table's name (e.g., add _2 or _3) to create a fresh table.### OpenAI```tsimport { OpenAI } from "https://esm.town/v/std/openai";const openai = new OpenAI();const completion = await openai.chat.completions.create({ messages: [ { role: "user", content: "Say hello in a creative way" },
// Val Town Narrative Engine with Integrated Test UI// =============================================================================import { OpenAI } from "https://esm.town/v/std/openai"; // Val Town's OpenAI integration// import { Env } from "https://esm.town/v/std/env"; // Not needed if OpenAI() handles API key// --- Configuration & Constants ---const OPENAI_MODEL = "gpt-4o";const MAX_TOKENS_RESPONSE = 700;}// --- OpenAI System Prompt (same as before) ---const SYSTEM_PROMPT = `You are a Rick and Morty-styled transdimensional narrative engine, probably cobbled together by Rick in a drunken stupor. Your primary role is to generate hilariously chaotic, compelling, and atmospherically bizarre narrative turns for an epic journey to save the multiverse (or, you know, whatever Rick feels like doing). } = ensureDefaultsAndInferStates(inputContext); const contextForOpenAI = { ...processedContext, _inferred_states_for_your_convenience: { }; const userMessage = `Input Context JSON (with inferred states for your reference):\n${ JSON.stringify(contextForOpenAI, null, 2) }`; try { const openai = new OpenAI(); const completion = await openai.chat.completions.create({ model: OPENAI_MODEL, response_format: { type: "json_object" }, messages: [ const rawContent = completion.choices[0]?.message?.content; if (!rawContent) { console.error("OpenAI returned an empty response message."); return new Response( JSON.stringify( getFallbackOutput("OpenAI empty response.", processedContext), ), { status: 500, headers: { "Content-Type": "application/json" } }, ) { console.error( "OpenAI response missing critical fields or incorrect structure.", JSON.stringify(generatedJson, null, 2), ); JSON.stringify( getFallbackOutput( "OpenAI response schema validation failed after generation.", processedContext, ), }); } catch (error) { console.error("Error during OpenAI API call or processing:", error); let errorMessage = "Internal server error"; if (error.response && error.response.data && error.response.data.error) { // More specific OpenAI error errorMessage = `OpenAI API Error: ${error.response.data.error.message}`; } else if (error.message) { errorMessage = error.message;
import { fetch } from "https://esm.town/v/std/fetch";import { OpenAI } from "https://esm.town/v/std/openai";import { z } from "npm:zod";}async function callOpenAI(sysP: string, userP: string, mid: string, tid: string, log: LogFn): Promise<string | null> { log("DB", "OpenAI", `Call tid=${tid}`, { sL: sysP.length, uL: userP.length }, mid, tid); try { // @ts-ignore const oai = new OpenAI(); const comp = await oai.chat.completions.create({ model: "gpt-4o-mini", const usg = comp.usage; if (!resT) { log("WN", "OpenAI", `No text tid=${tid}.`, { usg, fin: comp.choices[0]?.finish_reason }, mid, tid); return null; } log("IN", "OpenAI", `OK tid=${tid}`, { rL: resT.length, usg, fin: comp.choices[0]?.finish_reason }, mid, tid); return resT.trim(); } catch (err: any) { st: err.status, }; log("ER", "OpenAI", `Fail tid=${tid}:${err.message}`, { e: eD }, mid, tid); throw new Error( `OpenAI Fail: ${err.message}` + (err.code ? `(C:${err.code},S:${err.status})` : `(S:${err.status})`), ); } return { mid, cid: tid, p: {} as TOD, e: `${aC.name} fail:PromptGenErr.` }; } const rOR = await callOpenAI(sP, uP, mid, tid, l); if (!rOR) { l("WN", aC.name, `OpenAI no content tid=${tid}.`, 0, mid, tid); return { mid, cid: tid, p: {} as TOD, e: `${aC.name} fail:AI no content.` }; }
import { OpenAI } from "https://esm.town/v/std/openai";// Interface for formatting rulesexport async function extractFlightInfoWithAI(event: any): Promise<string> { try { const openai = new OpenAI(); const prompt = ` `; const completion = await openai.chat.completions.create({ messages: [ { role: "system", content: "You extract airport codes from flight information." },
<a href="?q=function" className="example-link">function</a> <a href="?q=discord" className="example-link">discord</a> <a href="?q=openai" className="example-link">openai</a> <a href="?q=react" className="example-link">react</a> </div> <a href="?q=function" className="example-link">function</a> <a href="?q=discord" className="example-link">discord</a> <a href="?q=openai" className="example-link">openai</a> <a href="?q=react" className="example-link">react</a> </div>
}, { "title": "An Introduction to OpenAI fine-tuning", "slug": "an-introduction-to-openai-fine-tuning", "link": "/blog/an-introduction-to-openai-fine-tuning", "description": "How to customize OpenAI to your liking", "pubDate": "Fri, 25 Aug 2023 00:00:00 GMT", "author": "Steve Krouse", "slug": "val-town-newsletter-16", "link": "/blog/val-town-newsletter-16", "description": "Our seed round, growing team, Codeium completions, @std/openai, and more", "pubDate": "Mon, 22 Apr 2024 00:00:00 GMT", "author": "Steve Krouse",
- Maintains context within conversations- Generates images based on text descriptions- Analyzes uploaded images using OpenAI's vision capabilities- Simple rule-based response system### Backend- Built with Hono for routing- OpenAI integration for image analysis- Val Town image generation service integration- Conversation context tracking with support for different message types### Image Analysis- Uses OpenAI's vision capabilities to analyze uploaded images- Supports common image formats (JPEG, PNG, etc.)- Provides detailed descriptions of image content
// For image analysisimport { OpenAI } from "https://esm.town/v/std/openai";const app = new Hono();const openai = new OpenAI();// Unwrap Hono errors to see original error details}// Image analysis function using OpenAIasync function analyzeImage(imageData: string) { try { const base64Image = imageData.split(',')[1]; // Call OpenAI API to analyze the image const response = await openai.chat.completions.create({ model: "gpt-4o", messages: [
Note: When changing a SQLite table's schema, change the table's name (e.g., add _2 or _3) to create a fresh table.### OpenAI```tsimport { OpenAI } from "https://esm.town/v/std/openai";const openai = new OpenAI();const completion = await openai.chat.completions.create({ messages: [ { role: "user", content: "Say hello in a creative way" },
reconsumeralization
import { OpenAI } from "https://esm.town/v/std/openai";
import { sqlite } from "https://esm.town/v/stevekrouse/sqlite";
/**
* Practical Implementation of Collective Content Intelligence
* Bridging advanced AI with collaborative content creation
*/
exp
kwhinnery_openai
lost1991
import { OpenAI } from "https://esm.town/v/std/openai";
export default async function(req: Request): Promise<Response> {
if (req.method === "OPTIONS") {
return new Response(null, {
headers: {
"Access-Control-Allow-Origin": "*",
No docs found